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Direct cleavage of a RCN bond followed by reconnection of ~ Table 1. Nickel-Catalyzed Carbocyanation of 4-Octyne (2a) Using
. . a
both R and CN with two carbons in unsaturated carboarbon Allyl Cyanides

bonds, namely the carbocyanation reacfipnovides ready access Rl _~_CN Ni(cod), (10 mol %) CN

to highly functionalized nitriles from simple ones with perfect atom \/\F'; P(4-CPyCeHa)s (20 mol %) RSWM

economy and, thus, should be of great synthetic value. We report 1a-1e CHZCN, 80 °C P

herein a new carchyanaho_n of alkyne_s using allyl (_:yanldes_,. The br é pr R® = H (3aa); Me (3ba)

present allylcyanation reaction allows simultaneous installation of 2a +Bu (3da); Ph (3ea)

a linear G having a terminal double bond or carbonyl group and

CN to alkynes having various functional groups in highly regio- _ &MY R R? time (h) 3(5E52° yield (%)°

and stereoselective manners. 1 H H (1a) 8 3aa(—) 78
To probe the viability of the allylcyanation reaction, we initially 2 Me H (1b) 17 3ba(83:17) 55

surveyed a set of nickel catalysts for the reac_tion of allyl cyanide 2d EBU ml(;)c) ig ggggi%éi)) 23

(la 4.0 mmolf and 4-octyne Za: 1.0 mmol) in CHCN at 80 5d Ph H (e 18 3ea(>99:1) 86

°C. Of the ligands we examined with Ni(cedjLO mol %), P(4-

CR—CgHz)s was found to be optimal to give the expecteid- a All reactions were carried out using an allyl cyanide (4.0 mma4),

5 a_di 5B ; " ; ; (2.0 mmol), Ni(cod) (0.120 mmol), P(4-CEk—CsHa)3 (0.20 mmol) in CHCN
adduct, £)-2,3-dipropyl-2,5-hexadienenitrilga), exclusively in (2.0 mL) at 80°C. ® Determined byH NMR and/or GC analysis of a crude

78% vyield (entry 1 of Table 1).Under these conditions, both  andjor purified product Isolated yields based d?a. @ The reaction was
3-pentenenitrileb) and 2-methyl-3-butenenitrileL€) also reacted carried out in CHCN (1.0 mL).

with 2ato give the same crotylcyanation prod@tta as a mixture

. . . . Sch 1. Carb ti f 2a Usi -Siloxylallyl Cyanides?
of stereoisomers (entries 2 and 3), suggesting-allylnickel cheme arbocyanation of <a Lsing a-stioxylallyl Lyanides

intermediate (vide infra). No detectable amount of the adduct (1_0"::'mol) OSiMe,R CN o CN
derived from the addition at the congested carbon was observed. . I P b P
The reactions ofE)-5,5-dimethyl-3-hexenenitrilelfl) and €)-4- OSiMe,R I Pr H ! P
phenyl-3-butenenitirile(e) gave the corresponding linear adducts )\/ 3ga (R = t_BL)’ 87%, 3a, 81,,;0
3da and3eaas stereochemically pure forms (entries 4 and 5). N(i 5 | EZ=4852 (1 h, from 1f)

The addition ofa-siloxyallyl cyanide1f (1.5 mmol), which is e eau(1g G oM 19
readily available from acrolein and N®CN, acros®a (1.0 mmol) 2 Reagents and Conditions: (a) Ni(ce@10 mol %), P(4-CE—CsHa)s
also proceeded at the-carbon exclusively to give aldehydfa (20 mol %), CHCN, 80°C; (b) 1 M HCI ag, THF, 0°C to rt overnight.

after acidic hydrolysis (Scheme 4Jormation of a silyl enol ether _ _ _
as an initial product of the present catalytic reaction was proved Scheme 2. Plausible Mechanism of Allylcyanation of Alkynes

by usinga-tert-butyldimethylsilyloxyallyl cyanide 1g), affording NG~ R or /\(CN
X

the corresponding silyl enol eth8gain 87% yield as a mixture R R
of stereoisomers. oN LNIQ) — /,}',/T:

Other a-siloxyallyl cyanides having a substituent at the or R1WR3 L = (4-CF3—CgHa)sP CN f— o
p-position underwent the addition reaction acr@ss giving the R2 n=21 0r32 —
corresponding aldehydes or ketones in good yields (entri@sdf R°<R ]
Table 2), whereas the reactionsjebubstituted ones such &s){ L.Ni—CN ) /&rn
4-phenyl-2-(trimethylsilyloxy)-3-butenenitrile turned out to be RN NP gy —— R\"N”‘E;N
sluggish. Alkynes other thaa were also examined usingf. R2 N Ro

2-Butyne @b) reacted similarly albeit in a lower yield (entry 5);
whereas the reaction of 2-pentyrgz)showed poor regioselectivity . . .
(entry 6), 1-phenylpropyne2¢) gave an isomer having a larger hlndered_spcarbc_m of an alkyné@ tg give an aII_<enyI-N|(||)-CN
phenyl group at a cyanosubstituted carbon preferentially (entry 7). intermediate, _Wh'Ch would affF’fd aa§-a.llylc_yanat|on product and
Terminal alkynes also underwent the carbocyanation reaction in "e9enerate Ni(0) upon reductive elimination (Scheme 2).

highly regioselective manners (entries B3) even on a gram-scale Synthetic versatility of the carbocyanation products is demon-
(entry 8)5 Functional groups such as chloro, ester, and phthalimide Strated briefly in Scheme 3. The cyano groupBehwas reduced
were tolerated (entries $12). to give the corresponding substituted acrolgior allyl alcohol6,

On the basis of the observed experimental results, we considerwhereas the formyl group @fa was transformed to afford alcohol
that the catalysis would be initiated by oxidative addition of a 7 or 2,6-heptadienenitrilg, a formal homoallylcyanation produt.
C—CN bond to Ni(0§2 to give at first a-allylnickel intermediate. Aldol-type condensation o8fa with formaldehyde gave-func-
The primary carbon of the allyl group would migrate to the less tionalized acroleir® in 83% yield!?
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Table 2. Nickel-Catalyzed Carbocyanation of Alkynes Using
o-Siloxyallyl Cyanides?

entry allyl cyanide alkyne time (h) major product, yield (%)?
OSiMe, Q CN
R—~ R "
NC Pr
1 R=Me(1h) 2a 2 R = Me (3ha), 71%
2¢ Et (1i) 2a 3 Et (3ia), 81%
3¢ Ph (1)) 2a 2 Ph (3ja), 54%
OSiMes o] CN
4 NC 2a 12 HWPr
Me Me Pr
1k 3ka, 69%
0 CN
Me———R HWLR
Me
5 1f R = Me (2b) 1 R = Me (3fb), 58%
6 1f Et (2c) 1 Et (3fc), 58% (61:39)¢
7 1f Ph (2d) 1 Ph (3fd), 70% (93:7)¢
0 CN
=—R HWR
8° 1f R = Hex (2e) 1 R = Hex (3fe), 74%' (92:8)¢
99 1f t-Bu (2f) 1 t-Bu (3ff), 61%" (>99:1)¢
=—(CH,)sFG 9 N
=(CHa)s HJJ\/\/K/\/FG
109 1f FG =Cl (2g) 1 FG =Cl (3fg), 78%" (95:5)¢
119 1f CO,Me (2h) 1 CO,Me (3fh), 62%" (95:5)¢
129 1f CH,NPhth (2i) 1 CH,NPhth (3fi), 60% (90:10)¢
SiM o] CN
139 1f =—SiMe; 1
2 H 2 SiMe,

3fj, 36%" (>99:1)¢

aUnless otherwise noted, all reactions were carried out using an allyl

cyanide (1.5 mmol), an alkyne (1.0 mmol), Ni(ce€).10 mmol), and P(4-
CR3—CgHa)3 (0.20 mmol) in CHCN (1.0 mL) at 80°C, and crude products
were treated wit 1 M HCl aq in THF at C°C to rt. P Isolated yields of an
isomerically pure product based on an alkyh&he reaction was carried
out in toluene at 126C. 9 Ratios to a regioisome#( structure is shown in
Supporting Information) determined B NMR and/or GC analysis of a
crude and/or purified product.The reaction was carried out usidfj (15
mmol) and2e (30 mmol).fIsolated yields of an inseparable mixture of
two regioisomers based dif. 9 1f (1.0 mmol) and an alkyne (2.0 mmol)
were used" Isolated yields of an isomerically pure product basedibn

Scheme 3. Transformations of Allylcyanation Products?

a R
3aa — WPr Jb
Pr
o CN
e
HWPF -~
Pr

9, 83%

R = CHO (5), 90%
CH,OH (6), 91%

cord

3fa —

R
Pr

Pr

R = CH,OH (7), 81%

CH=CHj, (8), 72%

(81% conv. of 3fa)

aReagents and Conditions: (a) DIBAL-H, toluere/8°C, 1.5 h, then

SiOy; (b) LiAIH 4, THF, rt, 10 min; (c) NaBH, MeOH, 0°C, 1 h; (d)
CHy(Znl)2, THF, 1t, 0.5 h; (e) HCHO aq, (CHsNH, EtCOH, i-PrOH, 45
°C, 24 h.

In conclusion, we have demonstrated for the first time that
allylcyanation of alkynes proceeds successfully under nickel

catalysis. The reaction allows one-step synthesis of a diverse range

of alkenenitriles having functional groups regio- and stereoselec-
tively. Further efforts to expand the scope of the chemistry to other
nitriles and unsaturated compounds are ongoing subjects in our
laboratories.
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